Abstract

The right-invariant Riemannian metric on simplex shape spaces in fact makes them particular Riemannian symmetric spaces of non-compact type. In the paper, the general properties of such symmetric spaces are made explicit for simplex shape spaces. In particular, a global matrix coordinate representation is suggested, with respect to which several geometric features, important for shape analysis, have simple and easily computable expressions. As a typical application, it is shown how to locate the Fréchet means of a class of probability measures on the simplex shape spaces, a result analogous to that for Kendall's shape spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.