Abstract
Given a directed graph G=(V,A) with a non-negative weight (length) function on its arcs w:A→ℝ+ and two terminals s,t∈V, our goal is to destroy all short directed paths from s to t in G by eliminating some arcs of A. This is known as the short paths interdiction problem. We consider several versions of it, and in each case analyze two subcases: total limited interdiction, when a fixed number k of arcs can be removed, and node-wise limited interdiction, when for each node v∈V a fixed number k(v) of out-going arcs can be removed. Our results indicate that the latter subcase is always easier than the former one. In particular, we show that the short paths node-wise interdiction problem can be efficiently solved by an extension of Dijkstra’s algorithm. In contrast, the short paths total interdiction problem is known to be NP-hard. We strengthen this hardness result by deriving the following inapproximability bounds: Given k, it is NP-hard to approximate within a factor c<2 the maximum s–t distance d(s,t) obtainable by removing (at most) k arcs from G. Furthermore, given d, it is NP-hard to approximate within a factor $c<10\sqrt{5}-21\approx1.36$ the minimum number of arcs which has to be removed to guarantee d(s,t)≥d. Finally, we also show that the same inapproximability bounds hold for undirected graphs and/or node elimination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.