Abstract

In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.