Abstract

Mechanical systems are often modeled with the multibody system method or the finite element method and numerically described with systems of differential equations. Increasing demands on detail and the resulting high complexity of these systems make the use of model order reduction inevitable. Frequently, moment matching based on Krylov subspaces is used for the reduction. There, the transfer functions of the full system and of the reduced system are matched at distinct frequency shifts. The selection of these shifts, however, is not trivial. In this contribution we suggest an algorithm that evaluates an increasing number of shifts iteratively until a reduced model that approximates the full model in a subspace with very low approximation error is found. Thereafter, the projection matrix that spans this subspace is decomposed with singular value decomposition and only most important directions are retained. In this way, small reduced models with good approximation properties that do not exceed a predefined error bound can be found or low-error models for a given reduced order can be generated. The evaluation of more shifts than necessary and further reduction by means of singular value decomposition is the novelty of this contribution. In this paper, this novel approach is extensively studied and, furthermore, applied to the numerical example of an industrial helicopter model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.