Abstract

Abstract A long unresolved issue in nonorographic gravity wave generation is whether there is significant emission from Kelvin–Helmholtz (KH) shear instability in the lower stratosphere, for instance, just above tropopause jets. Such emission has often been suggested as significant for the angular momentum budget and hence for the wave-driven circulation of the middle atmosphere, most crucially in the summer mesosphere. An idealized model thought experiment is studied in which it is assumed that the KH shear instability rapidly mixes a thin layer, producing a “pancake” of three-dimensional clear-air turbulence, and emitting low-frequency inertia–gravity waves whose aspect ratio matches that of the turbulent layer and whose horizontal wavelength is large enough to avoid back-reflection and hence reach the summer mesosphere. The wave emission is modeled as a linear initial-value problem in which the rapid mixing of mass and momentum achieved by the turbulence is treated as instantaneous, and hence as determ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.