Abstract

We study the divergent terms and the finite term in the expansion of the holographic entanglement entropy as the ultraviolet cutoff vanishes for smooth spatial regions having arbitrary shape, when the gravitational background is a four dimensional asymptotically Lifshitz spacetime with hyperscaling violation, in a certain range of the hyperscaling parameter. Both static and time dependent backgrounds are considered. For the coefficients of the divergent terms and for the finite term, analytic expressions valid for any smooth entangling curve are obtained. The analytic results for the finite terms are checked through a numerical analysis focussed on disks and ellipses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.