Abstract
In a recent series of papers, Kavitha et al. [2,3,4] solved three inhomogeneous nonlinear Schrödinger (INLS) integro-differential equation under the influence of a variety of nonlinear inhomogeneities and nonlocal damping by the modified extended tangent hyperbolic function method. They obtained several kinds of exact solitary solutions accompanied by the shape changing property. In this paper, we demonstrate that most of exact solutions derived by them do not satisfy the nonlinear equations and consequently are wrong. Furthermore, we study a generalized Hirota equation with spatially-inhomogenetiy and nonlocal nonlinearity. Its integrability is explored through Painlevé analysis and N-soliton solutions are obtained based on the Hirota bilinear method. Effects of linear inhomogeneity on the profiles and dynamics of solitons are also investigated graphically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.