Abstract

In this work, it is proved that a set of numbers closed under addition and whose representations in a rational base numeration system is a rational language is not a finitely generated additive monoid. A key to the proof is the definition of a strong combinatorial property on languages : the bounded left iteration property. It is both an unnatural property in usual formal language theory (as it contradicts any kind of pumping lemma) and an ideal fit to the languages defined through rational base number systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.