Abstract
The problem of looking for subsets of the natural numbers which contain no 3-term arithmetic progressions has a rich history. Roth's theorem famously shows that any such subset cannot have positive upper density. In contrast, Rankin in 1960 suggested looking at subsets without three-term geometric progressions, and constructed such a subset with density about 0.719. More recently, several authors have found upper bounds for the upper density of such sets. We significantly improve upon these bounds, and demonstrate a method of constructing sets with a greater upper density than Rankin's set. This construction is optimal in the sense that our method gives a way of effectively computing the greatest possible upper density of a geometric-progression-free set. We also show that geometric progressions in Z/nZ behave more like Roth's theorem in that one cannot take any fixed positive proportion of the integers modulo a sufficiently large value of n while avoiding geometric progressions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.