Abstract
Compact directed acyclic word graphs (CDAWGs) [Blumer et al. 1987] are a fundamental data structure on strings with applications in text pattern searching, data compression, and pattern discovery. Intuitively, the CDAWG of a string T is obtained by merging isomorphic subtrees of the suffix tree [Weiner 1973] of the same string T, thus CDAWGs are a compact indexing structure. In this paper, we investigate the sensitivity of CDAWGs when a single character edit operation (insertion, deletion, or substitution) is performed at the left-end of the input string T, namely, we are interested in the worst-case increase in the size of the CDAWG after a left-end edit operation. We prove that if $$\textsf{e}$$ is the number of edges of the CDAWG for string T, then the number of new edges added to the CDAWG after a left-end edit operation on T is less than $$\textsf{e}$$ . Further, we present almost matching lower bounds on the sensitivity of CDAWGs for all cases of insertion, deletion, and substitution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.