Abstract
We are interested in studying semilinear Cauchy problems in which the closed linear operator is not Hille-Yosida and its domain is not densely defined. Using integrated semigroup theory, we study the positivity of solutions to the semilinear problem, the Lipschitz perturbation of the problem, differentiability of the solutions with respect to the state variable, time differentiability of the solutions, and the stability of equilibria. The obtained results can be used to study several types of differential equations, including delay differential equations, age-structure models in population dynamics, and evolution equations with nonlinear boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.