Abstract
We show that a semibounded Wiener-Hopf quadratic form is closable in the space $L^2({\Bbb R}_{+})$ if and only if its integral kernel is the Fourier transform of an absolutely continuous measure. This allows us to define semibounded Wiener-Hopf operators and their symbols under minimal assumptions on their integral kernels. Our proof relies on a continuous analogue of the Riesz Brothers theorem obtained in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.