Abstract
The problem of controlling a system with constant but unknown parameters is considered. The analysis is restricted to discrete time single-input single-output systems. An algorithm obtained by combining a least squares estimator with a minimum variance regulator computed from the estimated model is analysed. The main results are two theorems which characterize the closed loop system obtained under the assumption that the parameter estimates converge. The first theorem states that certain covariances of the output and certain cross-covariances of the control variable and the output will vanish under weak assumptions on the system to be controlled. In the second theorem it is assumed that the system to be controlled is a general linear stochastic nth order system. It is shown that if the parameter estimates converge the control law obtained is in fact the minimum variance control law that could be computed if the parameters of the system were known. This is somewhat surprising since the least squares estimate is biased. Some practical implications of the results are discussed. In particular it is shown that the algorithm can be feasibly implemented on a small process computer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.