Abstract

Given a self-concordant barrier function for a convex set[Figure not available: see fulltext.], we determine a self-concordant barrier function for the conic hull[Figure not available: see fulltext.] of[Figure not available: see fulltext.]. As our main result, we derive an "optimal" barrier for[Figure not available: see fulltext.] based on the barrier function for[Figure not available: see fulltext.]. Important applications of this result include the conic reformulation of a convex problem, and the solution of fractional programs by interior-point methods. The problem of minimizing a convex-concave fraction over some convex set can be solved by applying an interior-point method directly to the original nonconvex problem, or by applying an interior-point method to an equivalent convex reformulation of the original problem. Our main result allows to analyze the second approach showing that the rate of convergence is of the same order in both cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.