Abstract

The conventional approach for testing the equality of two normal mean vectors is to test first the equality of covariance matrices, and if the equality assumption is tenable, then use the two-sample Hotelling T 2 test. Otherwise one can use one of the approximate tests for the multivariate Behrens–Fisher problem. In this article, we study the properties of the Hotelling T 2 test, the conventional approach, and one of the best approximate invariant tests (Krishnamoorthy & Yu, 2004) for the Behrens–Fisher problem. Our simulation studies indicated that the conventional approach often leads to inflated Type I error rates. The approximate test not only controls Type I error rates very satisfactorily when covariance matrices were arbitrary but was also comparable with the T 2 test when covariance matrices were equal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.