Abstract
We propose an equilibrium framework within which to price financial securities written on non-tradable underlyings such as temperature indices. We analyze a financial market with a finite set of agents whose preferences are described by a convex dynamic risk measure generated by the solution of a backward stochastic differential equation. The agents are exposed to financial and non-financial risk factors. They can hedge their financial risk in the stock market and trade a structured derivative whose payoff depends on both financial and external risk factors. We prove an existence and uniqueness of equilibrium result for derivative prices and characterize the equilibrium market price of risk in terms of a solution to a non-linear BSDE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.