Abstract
Wireless communication is one of the key technologies that actualize the Internet of Things (IoT) concept into the real world. Understanding the security performance of wireless communications lays the foundation for the security management of IoT. Eavesdropper collusion represents a significant threat to wireless communication security, while physical-layer security serves as a promising approach to providing a strong form of security guarantee. This paper studies the important secrecy outage performance of wireless communications under eavesdropper collusion, where the physical layer security is adopted to counteract such attack. Based on the classical Probability Theory, we first conduct analysis on the secrecy outage of the simple noncolluding case in which eavesdroppers do not collude and operate independently. For the secrecy outage analysis of the more hazardous M-colluding scenario, where any M eavesdroppers can combine their observations to decode the message, the techniques of Laplace transform, keyhole contour integral, and Cauchy Integral Theorem are jointly adopted to work around the highly cumbersome multifold convolution problem involved in such analysis, such that the related signal-to-interference ratio modeling for all colluding eavesdroppers can be conducted and thus the corresponding secrecy outage probability can be analytically determined. Finally, simulation and numerical results are provided to illustrate our theoretical achievements. An interesting observation suggests that the SOP increases first superlinearly and then sublinearly with M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.