Abstract

Theoretical studies on physical layer security often adopt the secrecy outage probability as the performance metric for wireless communications over quasi-static fading channels. The secrecy outage probability has two limitations from a practical point of view: a) it does not give any insight into the eavesdropper's decodability of confidential messages; b) it cannot characterize the amount of information leakage to the eavesdropper when an outage occurs. Motivated by the limitations of the secrecy outage probability, we propose three new secrecy metrics for secure transmissions over quasi-static fading channels. The first metric establishes a link between the concept of secrecy outage and the decodability of messages at the eavesdropper. The second metric provides an error-probability-based secrecy metric which is typically used for the practical implementation of secure wireless systems. The third metric characterizes how much or how fast the confidential information is leaked to the eavesdropper. We show that the proposed secrecy metrics collectively give a more comprehensive understanding of physical layer security over fading channels and enable one to appropriately design secure communication systems with different views on how secrecy is measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.