Abstract

Directional derivatives of value functions play an essential role in the sensitivity and stability analysis of parametric optimization problems, in studying bi-level and min–max problems, in quasi-differentiable calculus. Their calculation is studied in numerous works by A.V. Fiacco, V.F. Demyanov and A.M. Rubinov, R.T. Rockafellar, A. Shapiro, J.F. Bonnans, A.D. Ioffe, A. Auslender and R. Cominetti, and many other authors. This article is devoted to the existence of the second order directional derivatives of value functions in parametric problems with non-single-valued solutions. The main idea of the investigation approach is based on the development of the method of the first-order approximations by V.F. Demyanov and A.M. Rubinov.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.