Abstract

In an effort to detect torsional oscillations, we have studied the periodic half-width variations for several spectral lines in solar faculae. The duration of the series being analyzed was from 40 to 150 min. We have determined the dominant frequencies and amplitudes of the half-width oscillations and considered their phase relations to the intensity and line-of-sight velocity oscillations. Five-minute profile halfwidth oscillations with a peak-to-peak amplitude of ∼10 m ˚A are recorded with confidence in the upperphotospheric Si I 10 827 ˚A line in faculae. The chromospheric He I 10 830 A˚ and Hα line profiles shows ∼40–60 m ˚A variations in two frequency bands, 2.5–4 and 1–1.9 mHz. No center-to-limb dependence that, according to the theory, must accompany the torsional oscillations has been revealed in the behavior of the oscillation amplitudes. According to present views, these variations cannot be caused by periodic temperature and magnetic field changes. Our observations do not allow us to explain these variations by the sausage mode action either, which should manifest itself at the double frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call