Abstract

A graph G is said to be SD-harmonious labeling if there exists an injection f: V(G) -> {0,1,2,...,q} such that the induced function f*: E(G) ->{0,2,...,2q-2} defined by f(uv)=S+D (mod 2q) is bijective, where S=f(u)+f(v) and D=|f(u)-f(v)|, for every edge uv in E(G). A graph which admits SD-harmonious labeling is called SD-harmonious graph. In this paper, we investigate SD-harmonious labeling of path related graphs, tree related graphs, star related graphs and disjoint union of graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.