Abstract

The notion of Scott consequence system (briefly, S-system) was introduced by D. Vakarelov in [32] in an analogy to a similar notion given by D. Scott in [26]. In part one of the paper we study the category SSyst of all S-systems and all their morphisms. We show that the category DLat of all distributive lattices and all lattice homomorphisms is isomorphic to a reflective full subcategory of the category SSyst. Extending the representation theory of D. Vakarelov [32] for S-systems in P-systems, we develop an isomorphism theory for S-systems and for Tarski consequence systems. In part two of the paper we prove that the separation theorem for S-systems is equivalent in ZF to some other separation principles, including the separation theorem for filters and ideals in Boolean algebras and separation theorem for convex sets in convexity spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.