Abstract

We study positivity bounds in the presence of gravity. We first review the gravitational positivity bound at the tree-level, where it is known that a certain amount of negativity is allowed for the coefficients of higher-derivative operators. The size of these potentially negative contributions is estimated for several tree-level, Reggeized gravitational amplitudes which are unitary at high energies and feature the t-channel pole characteristic of graviton exchange. We also argue for the form of the one-loop Regge amplitude assuming that the branch cut structure associated with the exchange of the graviton and higher-spin particles is reflected. We demonstrate how the one-loop Regge amplitude appears by summing over Feynman diagrams. For our one-loop amplitude proposal, the positivity bounds generically receive a finite contribution from the Regge tower and do not lead to a parametrically small bound on the cut-off scale of the low-energy EFT, consistent with recent studies based on sum rules of the amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.