Abstract
In this paper, we introduce a new class of rings, SB-rings. We establish various properties of this concept. These shows that, in several respects, SB-rings behave like rings satisfying unit 1-stable range. We will give necessary and sufficient conditions under which a semilocal ring is a SB-ring. Furthermore, we extend these results to exchange rings with all primitive factors artinian. For such rings, we observe that the concept of the SB-ring coincides with Goodearl-Menal condition. These also generalize the results of Huh et al., Yu and the author on rings generated by their units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.