Abstract

Models for deterministic continuous-time nonlinear systems typically take the form of ordinary differential equations. To utilize these models in practice invariably requires discretization. In this paper, we show how an approximate sampled-data model can be obtained for deterministic nonlinear systems such that the local truncation error between the output of this model and the true system is of order /spl Delta//sup r+1/, where /spl Delta/ is the sampling period and r is the system relative degree. The resulting model includes extra zero dynamics which have no counterpart in the underlying continuous-time system. The ideas presented here generalize well-known results for the linear case. We also explore the implications of these results in nonlinear system identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.