Abstract

Salt stress is one of the unfavorable environmental factors to affect plants. Salinity represses root growth, resulting in reduced biomass of agricultural plants. Little is known about how plants maintain root growth to counteract salt stress. The AP2-domain transcription factors PLETHORA1/2 (PLT1/2) act as master regulators in root meristem maintenance in Arabidopsis. In this study, we report that the salt overly sensitive (SOS) pathway component SOS2 regulates PLT1/2 at the post-transcriptional level. Salt-activated SOS2 interacts and phosphorylates PLT1/2 through their conserved C-terminal motifs to stabilize PLT1/2, critical for root apical meristem maintenance under salt stress. The phospho-mimetic version of PLT1/2 restored meristem and primary root length reduction of sos2-2 and plt1-4 plt2-2 mutants on salt treatment. Moreover, SOS2-mediated PLT1/2 phosphorylation improves root growth recovery after salt stress alleviation. We identify a SOS2-PLT1/2 core protein module that is required for protecting primary root growth and meristem maintenance from salt stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.