Abstract
Based on results of Weil and of Burgess, we have obtained a boundK(l) such that all primesp ≧K(l) have a sequence of at leastl consecutive quadratic residues and a sequence of at leastl consecutive nonresidues in the interval [1,p − 1]. The bound forl=9 being 414463, we have computed, for primes less than 420000, the lengths of the longest sequences of consecutive residues and of nonresidues. We present these data and make some observations concerning them. One of the observations is that there is an observed difference in the length of the maximal sequence between primes congruent to 1 (mod 4) and primes congruent to 3 (mod 4).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.