Abstract

The mathematical interaction between the simultaneous rotation of both a coordinate frame and a set of physical vectors in that frame is covered and theoretically and empirically explained. A practical example related to the secular motion of the pole determined using recent GPS results is addressed. A least-squares adjustment is introduced to determine a possible displacement of the geodetic north pole of the frame caused by plausible changes in the coordinates of the observing stations defining the frame due to the rotation of the plates on which these stations are located. Two examples of GPS networks are investigated both referred to the latest definition of the IGS08 geodetic frame. The positioning and velocities of the points were exclusively obtained using GPS data as published by the International GNSS Service (IGS). The first case comprises the complete GPS/IGS network of global stations; the second one assumes the closest GPS/IGS stations to the now discontinued International Latitude Service network. The results of this exercise hints at the possibility that the secular global rotation of the frame caused by plate rotations should be accounted for in order to rigorously determine the true absolute velocities referred to the IGS frame before the actual velocities of the rotation of the plates using GPS observations are published.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.