Abstract

AbstractThe aim of this article is to present the essential properties of a finite class of orthogonal polynomials related to the probability density function of the F‐distribution over the positive real line. We introduce some basic properties of the Romanovski–Jacobi polynomials, the Romanovski–Jacobi–Gauss type quadrature formulae and the associated interpolation, discrete transforms, spectral differentiation and integration techniques in the physical and frequency spaces, and basic approximation results for the weighted projection operator in the nonuniformly weighted Sobolev space. We discuss the relationship between such kinds of finite orthogonal polynomials and other classes of infinite orthogonal polynomials. Moreover, we derive spectral Galerkin schemes based on a Romanovski–Jacobi expansion in space and time to solve the Cauchy problem for a scalar linear hyperbolic equation in one and two space dimensions posed in the positive real line. Two numerical examples demonstrate the robustness and accuracy of the schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.