Abstract
A characteristic model based all-coefficient adaptive control law was recently implemented on an experimental test rig for high-speed energy storage flywheels suspended on magnetic bearings. Such a control law is an intelligent control law, as its design does not rely on a pre-established mathematical model of a plant but identifies its characteristic model while the plant is being controlled. Extensive numerical simulations and experimental results indicated that this intelligent control law outperforms a μ-synthesis control law, originally designed when the experimental platform was built in terms of their ability to suppress vibration on the high-speed test rig. We further establish, through an extensive simulation, that this intelligent control law possesses considerable robustness with respect to plant uncertainties, external disturbances, and time delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers of Information Technology & Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.