Abstract
A popular approach for addressing uncertainty in variational inequality problems is by solving the expected residual minimization (ERM) problem. This avenue necessitates distributional information associated with the uncertainty and requires minimizing nonconvex expectation-valued functions. We consider a distinctly different approach in the context of uncertain linear complementarity problems with a view towards obtaining robust solutions. Specifically, we define a robust solution to a complementarity problem as one that minimizes the worst-case of the gap function. In what we believe is amongst the first efforts to comprehensively address such problems in a distribution-free environment, we show that under specified assumptions on the uncertainty sets, the robust solutions to uncertain monotone linear complementarity problem can be tractably obtained through the solution of a single convex program. We also define uncertainty sets that ensure that robust solutions to non-monotone generalizations can also be obtained by solving convex programs. More generally, robust counterparts of uncertain non-monotone LCPs are proven to be low-dimensional nonconvex quadratically constrained quadratic programs. We show that these problems may be globally resolved by customizing an existing branching scheme. We further extend the tractability results to include uncertain affine variational inequality problems defined over uncertain polyhedral sets as well as to hierarchical regimes captured by mathematical programs with uncertain complementarity constraints. Preliminary numerics on uncertain linear complementarity and traffic equilibrium problems suggest that the presented avenues hold promise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.