Abstract
Robust-optimization models belong to a special class of stochastic programs, where the traditional expected cost minimization objective is replaced by one that explicitly addresses cost variability. This paper explores robust optimization in the context of two-stage planning systems. We show that, under arbitrary measures for variability, the robust optimization approach might lead to suboptimal solutions to the second-stage planning problem. As a result, the variability of the second-stage costs may be underestimated, thereby defeating the intended purpose of the model. We propose sufficient conditions on the variability measure to remedy this problem. Under the proposed conditions, a robust optimization model can be efficiently solved using a variant of the L-shaped decomposition algorithm for traditional stochastic linear programs. We apply the proposed framework to standard stochastic-programming test problems and to an application that arises in auctioning excess electric power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.