Abstract
This paper proposes an object collision point estimation scheme by developing a new data fusion method in a multi-radar network environment. In order to reduce radar’s estimation error due to measurement uncertainty, we first design radar accuracy models determined by the position of each object. Then, an interacting multiple model (IMM) filter based on occupancy zones is designed for accurate object estimation. For a multi-radar network’s object estimation, we also design a radar data fusion method using the estimated object information through the IMM instead of the object estimation information given by the radars. A collision point identification problem, where multiple sensors calculate the different vehicle surface points of the same object, is solved by developing the data fusion method to estimate the object surface’s collision point closest to the ego vehicle center. The utility of the proposed scheme was validated through a scenario-based object estimation experiment. We confirmed that the proposed data fusion method produced substantially improved error distributions over conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.