Abstract

Abstract The environmental impact of road intersection operations, and in particular of alternative types of traffic control, has received increasing attention in recent years as a factor to be considered in addition to efficiency and safety. The purpose of this study is to provide experimental evidence about this issue based on direct measurement of CO2 emissions produced by a vehicle under traffic signal versus roundabout control. Carbon Dioxide was chosen as specific target of the analysis because of its important contribution to the “greenhouse effect”. Using data collected with a Portable Emission Measurement System (PEMS) installed on a test car, a before-and-after analysis was conducted on an intersection where a roundabout has replaced a traffic signal. A total of 396 trips were carried out by two drivers in different traffic conditions and in opposite directions along a designated route. Using statistical methods, the existence of significant differences in CO2 emissions in relation to the type of intersection control was investigated based on the collected data, also considering the effect of other explanatory variables and focusing in particular on peak traffic conditions. More precisely, the effect of the type of control has been characterized using descriptive statistics and permutation tests applied to the entire data set, while an analysis based on binary logistic regression has been performed with specific reference to trips carried out under peak traffic conditions. The results of these analyses support the conclusion that converting a signal-controlled intersection to a roundabout may lead to a decrease in CO2 emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.