Abstract

In this paper we consider the risk performances of some estimators for both location and scale parameters in a linear regression model under Inagaki’s loss function We prove that the pre-test estimator for location parameter is dominated by the Stein-rule estimator under Inagaki’s loss function when the distribution of error terms is expressed by the scale mixture of normal distribution and the variance of error terms is unknown.. It is an extension of the results in Nagata (1983) to our situation Also we perform numerical calculations to draw the shapes of the risks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.