Abstract

The rheological properties of a substance depend greatly on its morphology, and rod-shaped cellulose nanocrystals (RCNCs) and cellulose nanofibrils (CNFs) have been extensively studied for their rheological properties. Nevertheless, the rheological properties of disc-shaped cellulose nanocrystals (DCNCs) with crystalline allomorph II derived from mercerized cellulose remain unknown yet. This work investigated the DCNCs' rheological properties in depth using steady-shear and oscillation measurements. At the same concentration, DCNC's suspension viscosity is lower than that of RCNC; RCNC has an instinct viscosity of 258.2, while DCNC has 187.9. Comparing RCNC suspensions with cellulose nanorods, DCNC has a lower aspect ratio and exhibits a distinct steady shear behavior. Under polarized film, DCNC suspension cannot self-assemble into chiral or liquid crystal phases, and with increasing concentrations, the system transitions from an isotropic phase to a gel phase. Oscillation sweeps demonstrate that the gel transition occurs at 7 %–8 %. Based on thixotropic recovery sweep outcomes, the high-stress oscillations enhance the network structure of DCNC suspensions, which is significantly different from that of RCNC suspensions. Results demonstrate the unique properties of DCNC, highlighting its application as a rheological modifier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call