Abstract

In this paper, the material forming process (such as that of the functionally graded materials) of adding nanoparticles into non-Newtonian fluids is considered. By adding nanoparticles to a non-Newtonian fluid, a new non-Newtonian fluid is created. Thus, the rheological characteristics of the original fluid matrix have been changed. This research attempts to consider the influence of the rheological characteristics combined with the Brownian diffusion, and the thermophoresis diffusion, the distribution of nano-sized particles, the heat transfer, and the pressure drop on the process of material formation. The configuration of material treatment process is an H-height horizontal parallel plate channel with laminar forced convection nanofluids-based non-Newtonian fluids flowing through. The channel is separated by three different boundary conditions: heating, cooling, and isolated, to simulate the melting, the freezing, and the flowing processes of materials in liquid form. The non-Newtonian behaviour of nanofluids is described by the power-law model. To highlight the rheological factors of power-law nanofluids which are not the same as those of the base non-Newtonian fluids, they are assumed to vary with the quantity of the added nanoparticles in the fluid matrix, that is to say, both the consistency coefficient $$m$$ and the power-law index $$n$$ are considered as functions of particle loading parameter $$\phi$$ . Two sets of different functions of consistency coefficient $$m$$ and power-law index $$n$$ are used and compared in the later calculation. Method of finite element is adopted to solve the coupled momentum, energy and concentration equations, and conquer the difficulties arsing in the iteration of calculation. It is found that whether the rheological factors of non-Newtonian nanofluids are considered changeable or not would lead to very different results of the mass transfer. Also, as the parameter $$N_{\text{T}}$$ (depicting the thermophoresis diffusion) increases, both temperature and concentration profiles rise, while volume fraction of particles and temperature both fall as $$N_{\text{B}}$$ number (presenting the Brownian diffusion) increases. Furthermore, when two models are compared, different rheological models may possess different change rule of power-law index, but in both rheological models, the diversification of power-law index is so large that it cannot be ignored in calculation. Above all, the detailed information of velocity, temperature, and pressure drop obtained by rheological models highlights the necessity of studying the impact of rheological characteristics of non-Newtonian fluids in elaborate industrial requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.