Abstract
Some classes of nonlinear equations of mathematical physics are described that admit order reduction through the use of a hydrodynamic-type transformation, where the unknown function is taken as a new independent variable and an appropriate partial derivative is taken as the new dependent variable. RF-pairs and associated Bäcklund transformations are constructed for evolution equations of general form. The results obtained are used for order reduction of hydrodynamic equations (Navier–Stokes and boundary layer) and constructing exact solutions to these equations. A generalized Calogero equation and a number of other new linearizable nonlinear differential equations of the second, third and forth orders are considered. Some integro-differential equations are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.