Abstract
Deterministic two-way transducers define the robust class of regular functions which is, among other good properties, closed under composition. However, the best known algorithms for composing two-way transducers cause a double exponential blow-up in the size of the inputs. In this paper, we introduce a class of transducers for which the composition has polynomial complexity. It is the class of reversible transducers, for which the computation steps can be reversed determin-istically. While in the one-way setting this class is not very expressive, we prove that any two-way transducer can be made reversible through a single exponential blow-up. As a consequence, we prove that the composition of two-way transducers can be done with a single exponential blow-up in the number of states. A uniformization of a relation is a function with the same domain and which is included in the original relation. Our main result actually states that we can uniformize any non-deterministic two-way transducer by a reversible transducer with a single exponential blow-up, improving the known result by de Souza which has a quadruple exponential complexity. As a side result, our construction also gives a quadratic transformation from copyless streaming string transducers to two-way transducers, improving the exponential previous bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.