Abstract
In a dynamic market, being able to update one's value based on information available to other bidders currently in the market can be critical to having profitable transactions. This is the model of interdependent values (IDV): a bidder's value can explicitly depend on the private information of other bidders. In this paper we present preliminary results about the revenue properties of dynamic auctions for IDV bidders. We adopt a computational approach to design single-item revenue-optimal dynamic auctions with known arrivals and departures but (private) signals that arrive online. In leveraging a characterization of truthful auctions, we present a mixed-integer programming formulation of the design problem. Although a discretization is imposed on bidder signals the solution is a mechanism applicable to continuous signals. The formulation size grows exponentially in the dependence of bidders' values on other bidders' signals. We highlight general properties of revenue-optimal dynamic auctions in a simple parameterized example and study the sensitivity of prices and revenue to model parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.