Abstract

In the k-Restricted-Focus-of-Attention (k-RFA) model, only k of the n attributes of each example are revealed to the learner, although the set of visible attributes in each example is determined by the learner. While thek -RFA model is a natural extension of the PAC model, there are also significant differences. For example, it was previously known that learnability in this model is not characterized by the VC-dimension and that many PAC learning algorithms are not applicable in the k-RFA setting. In this paper we further explore the relationship between the PAC and k -RFA models, with several interesting results. First, we develop an information-theoretic characterization of k-RFA learnability upon which we build a general tool for proving hardness results. We then apply this and other new techniques for studying RFA learning to two particularly expressive function classes,k -decision-lists (k-DL) and k-TOP, the class of thresholds of parity functions in which each parity function takes at most k inputs. Among other results, we prove a hardness result for k-RFA learnability of k-DL,k ≤ n-2 . In sharp contrast, an (n-1)-RFA algorithm for learning (n-1)-DL is presented. Similarly, we prove that 1-DL is learnable if and only if at least half of the inputs are visible in each instance. In addition, we show that there is a uniform-distribution k-RFA learning algorithm for the class of k -DL. For k-TOP we show weak learnability by ak -RFA algorithm (with efficient time and sample complexity for constant k) and strong uniform-distribution k-RFA learnability of k-TOP with efficient sample complexity for constant k. Finally, by combining some of our k-DL and k-TOP results, we show that, unlike the PAC model, weak learning does not imply strong learning in the k -RFA model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.