Abstract
AbstractLet P = M N be a Levi decomposition of a maximal parabolic subgroup of a connected reductive group G over a p-adic field F. Assume that there exists w0∊ G(F) that normalizes M and conjugates P to an opposite parabolic subgroup. When N has a Zariski dense Int M-orbit, F. Shahidi and X. Yu described a certain distribution D on M(F), such that, for irreducible unitary supercuspidal representations π of M(F) withis irreducible if and only if D( f )≠ 0 for some pseudocoefficient f of π. Since this irreducibility is conjecturally related to π arising via transfer from certain twisted endoscopic groups of M, it is of interest to realize D as endoscopic transfer from a simpler distribution on a twisted endoscopic group H of M. This has been done in many situations where N is abelian. Here we handle the standard examples in cases where N is nonabelian but admit a Zariski dense Int M-orbit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.