Abstract
Let m, n be positive integers. Suppose that G is a residually finite group in which for every element x ∈ G there exists a positive integer q = q(x) ≤ m such that xq is left n-Engel. We show that G is locally virtually nilpotent. Further, let w be a multilinear commutator and G a residually finite group in which for every product of at most 896 w-values x there exists a positive integer q = q(x) dividing m such that xq is left n-Engel. Then w(G) is locally virtually nilpotent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.