Abstract

Recently, there has been emerging interest in constructing reproducing kernel Banach spaces (RKBS) for applied and theoretical purposes such as machine learning, sampling reconstruction, sparse approximation and functional analysis. Existing constructions include the reflexive RKBS via a bilinear form, the semi-inner-product RKBS, the RKBS with ℓ1 norm, the p-norm RKBS via generalized Mercer kernels, etc. The definitions of RKBS and the associated reproducing kernel in those references are dependent on the construction. Moreover, relations among those constructions are unclear. We explore a generic definition of RKBS and the reproducing kernel for RKBS that is independent of construction. Furthermore, we propose a framework of constructing RKBSs that leads to new RKBSs based on Orlicz spaces and unifies existing constructions mentioned above via a continuous bilinear form and a pair of feature maps. Finally, we develop representer theorems for machine learning in RKBSs constructed in our framework, which also unifies representer theorems in existing RKBSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.