Abstract

The present work aims to primarily provide a general representation of the solution of the simplified elastostatics version of Mindlin’s Form II first-strain gradient elastic theory, which converges to the solution of the corresponding classical elastic boundary value problem as the intrinsic gradient parameters become zero. Through functional theory considerations, a solution representation of the one-intrinsic-parameter strain gradient elastostatic equation that comprises the classical elastic solution of the corresponding boundary value problem is rigorously provided for the first time. Next, that solution representation is employed to give an answer to contradictions arising by two well-known first-strain gradient elastic models proposed in the literature to describe the strain gradient elastostatic bending behavior of Bernoulli–Euler beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.