Abstract
Duality gaps which may occur in semi-infinite programs are shown to be interpretable as a phenomenon of an improper representation of the constraint set, uTPi ≧ ci, i ε I. Thus, any semi-infinite system of linear inequalities has a canonically closed equivalent (with interior points) which has no duality gap. With respect to the original system of inequalities, duality gaps may be closed by adjoining additional linear inequalities to the original system. Also, for consistent, but not necessarily canonically closed programs, a partial regularization of original data removes duality gaps that may occur. In contrast, a new “weakly consistent” duality theorem without duality gap may have a value determined by an inequality which is strictly redundant with respect to the constraint set defined by the total inequality system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.