Abstract
We derive non-linear commutator HS symmetry algebra, which encode unitary irreducible representations of AdS group subject to Young tableaux Y(s1,…, sk) with κ ≥ 2 rows on d-dimensional anti-de-Sitter space. Auxiliary representations for specially deformed non-linear HS symmetry algebra in terms of generalized Verma module in order to additively convert a subsystem of second-class constraints in the HS symmetry algebra into one with first-class constraints are found explicitly for the case of HS fields for κ = 2 Young tableaux. The oscillator realization over Heisenberg algebra for obtained Verma module is constructed. The results generalize the method of auxiliary representations construction for symplectic sp(2κ) algebra used for mixed-symmetry HS fields on a flat spaces and can be extended on a case of arbitrary HS fields in AdS-space. Gauge-invariant unconstrained reducible Lagrangian formulation for free bosonic HS fields with generalized spin (s1, s2) is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.