Abstract

The Reeb graph $\mathcal{R}(f) $ is one of the fundamental invariants of a smooth function $f\colon M\to \mathbb{R} $ with isolated critical points. It is defined as the quotient space $M/_{\!\sim}$ of the closed manifold $M$ by a relation that depends on $f$. Here we construct a $1$\nobreakdash-dimensional complex $\Gamma(f)$ embedded into $M$ which is homotopy equivalent to $\mathcal{R}(f) $. As a consequence we show that for every function $f$ on a manifold with finite fundamental group, the Reeb graph of $f$ is a tree. If $\pi_1(M)$ is an abelian group, or more general, a discrete amenable group, then $\mathcal{R}(f)$ contains at most one loop. Finally we prove that the number of loops in the Reeb graph of every function on a surface $M_g$ is estimated from above by $g$, the genus of $M_g$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.