Abstract

Abstract In this work a relationship between Fractional calculus (FC) and the solution of a first order partial differential equation (FOPDE) is suggested. With this relationship and considering an extra dimension, an alternative representation for fractional derivatives and integrals is proposed. This representation can be applied to fractional derivatives and integrals defined by convolution integrals of the Volterra type, i.e. the Riemann-Liouville and Caputo fractional derivatives and integrals, and the Riesz and Feller potentials, and allows to transform fractional order systems in FOPDE that only contains integer-order derivatives. As a consequence of considering the extra dimension, the geometric interpretation of fractional derivatives and integrals naturally emerges as the area under the curve of a characteristic trajectory and as the direction of a tangent characteristic vector, respectively. Besides this, a new physical interpretation is suggested for the fractional derivatives, integrals and dynamical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.