Abstract

We investigate the u=1/2left[mathcal{O}left({Lambda}_{mathrm{QCD}}right)right] and u=3/2left[mathcal{O}left({Lambda}_{mathrm{QCD}}^3right)right] renormalons in the static QCD potential in position space and momentum space using the OPE of the potential-NRQCD effective field theory. This is an old problem and we provide a formal formulation to analyze it. In particular we present detailed examinations of the u = 3/2 renormalons. We clarify how the u = 3/2 renormalon is suppressed in the momentum-space potential in relation with the Wilson coefficient VA(r). We also point out that it is not straightforward to subtract the IR renormalon and IR divergences simultaneously in the multipole expansion. Numerical analyses are given, which clarify the current status of our knowledge on the perturbative series. The analysis gives a positive reasoning to the method for subtracting renormalons used in recent αs(MZ ) determination from the QCD potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.